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Abstract. In this paper, we discuss the visualization of multidimensional data. A well-known
procedure for mapping data from a high-dimensional space onto a lower-dimensional one is
Sammon’s mapping. This algorithm preserves as well as possible all interpattern distances.
We investigate an unsupervised backpropagation algorithm to train a multilayer feed-for-
ward neural network (SAMANN) to perform the Sammon’s nonlinear projection. Sammon
mapping has a disadvantage. It lacks generalization, which means that new points cannot
be added to the obtained map without recalculating it. The SAMANN network offers the
generalization ability of projecting new data, which is not present in the original Sammon’s
projection algorithm. To save computation time without losing the mapping quality, we need
to select optimal values of control parameters. In our research the emphasis is put on the
optimization of the learning rate. The experiments are carried out both on artificial and real
data. Two cases have been analyzed: (1) training of the SAMANN network with full data
set, (2) retraining of the network when the new data points appear.
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1. Introduction

Feature extraction is the process of mapping the original features (measure-
ments) into fewer features, which preserve the main information of the data
structure. Feature extraction for exploratory data projection enables high-
dimensional data visualization for better data structure understanding and
for cluster analysis [5]. Furthermore, when the dimensionality of the pro-
jection space is two-dimensional (2D) the structure of the original dataset
can be inspected visually and conclusions on clustering tendencies can be
straightforwardly drawn.

The problem of data projection is defined as follows: given a set of high
dimensional data points, project them to a low-dimensional space so that
the result configuration would perform better than the original data in
further processing such as clustering, classification, indexing and searching
[4, 6]. Data projection has important applications in pattern analysis, data
mining and neural science. The visual inspection of the data can provide
a deeper insight into the data, since clustering tendencies or a low intrin-
sic dimensionality in the data may become apparent from the projection.
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In general, this projection problem can be formulated as mapping a set of
n vectors from an d-dimensional space onto an m-dimensional space, with
m<d.

A large number of approaches for data projection are available in pattern
recognition literature [4]. A well-known method to project data is principal
component analysis (PCA) which provides mean-square optimized linear
projection of data. Another classic method is the multi-dimensional scal-
ing (MDS) that works with inter-point distances and gives a low-dimen-
sional configuration that represents the given distances best. One of the
popular MDS-type projection algorithms is Sammon’s method [13]. It is a
simple but useful nonlinear projection technique that attempts to create a
2D configuration of points in which interpattern distances are preserved.
Sammon’s mapping is an iterative nonlinear procedure.

Mapping problem usually is formulated as an optimization one.
A mapping f transforms a pattern X of a d-dimensional space to a

pattern Y of an m-dimensional projected space, m < d, that is, Y = f (X),
such that a criterion J is optimized. The mapping f (X) is determined from
among all the transformations g(X), as the one that satisfied, J {f (X)} =
maxg J {g(X)}. The mappings differ by the functional forms of g(Y ) and
by the criteria they have to optimize.

The problem of finding the right configuration in a low-dimensional
space is an optimization problem: we are interested in obtaining such a
configuration that the stress function yields minimum. In general, this opti-
mization problem is difficult because of the very high dimensionality of the
parameter space. The stress function is optimal when all the original dis-
tances d∗

ij are equal to the distances of the projected points dij . However,
this is not likely to happen exactly. Therefore, the found distances will be
distorted representations of the relations within the data. The larger the
stress, the greater the distortion.

The finding a projected map usually starts from the initial configuration
of points (e.g. randomly chosen), and then the stress is calculated. Next,
the configuration is improved by shifting around all points in small steps
to approximate better and better the original distances (thus decreasing the
stress). This process is reiterated, until the map corresponding to a (local)
minimum of the stress is found.

Mao and Jain [8] have suggested a neural network implementation of
Sammon’s mapping. A specific backpropagation-like learning rule has been
developed to allow a normal feedforward artificial neural network to learn
Sammon’s mapping in an unsupervised way, called SAMANN. As an alter-
native to SAMANN’s unsupervised learning rule, one could also train
a standard feedforward artificial neural network, using supervised back-
propagation on a previously calculated Sammon’s mapping. Although it
requires much more computation, as it involves two learning phases (one
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for Sammon’s mapping, one for the neural network), it should perform at
least as well as SAMANN [11].

In Mao and Jain’s implementation the network is able to project new
patterns after training – a property Sammon’s mapping does not have. A
drawback of using SAMANN is that the original dataset has to be scaled
for the artificial neural network to be able to find a correct mapping, since
the neural network can only map to points in the sigmoid’s output interval
(0,1). This scaling is dependent on the maximum distance in the original
dataset. It is therefore possible that a new pattern, shown to the neural
network, will be mapped incorrectly, when its distance to a pattern in the
original dataset is larger than any of the original interpattern distances.
Another drawback of using SAMANN is that it is rather difficult to train
and it is extremely slow.

In this paper, we look for optimal values of the control parameters of
SAMANN network training seeking to speed up the learning process. Two
cases are analyzed: (1) training of the SAMANN network with full data
set, (2) retraining of the SAMANN network when the new data points
appear.

2. Local Search in Sammon’s Nonlinear Mapping

Sammon’s nonlinear mapping is an iterative procedure to project high-
dimensional data into low-dimensional configurations. Suppose that we
have n data points, Xi = (xi1, xi2 . . . , xid), i = 1, . . . , n, in a d-space and,
respectively, we define n points, Yi = (yi1, yi2 . . . , yim), i = 1, . . . , n, in a
m-space (m<d). The pending problem is to visualize these d-dimensional
vectors Xi, i = 1, . . . , d onto the plane R2. Let d∗

ij denote the distance
between Xi and Xj in the input space, and dij denote the distance between
the corresponding points Yi and Yj in the projected space. The Euclidean
distance is frequently used. The projection error measure E is as follows:

E = 1
∑n

i,j=1;i<j d∗
ij

n∑

i,j=1
i<j

(d∗
ij −dij )

2

d∗
ij

.

The coordinates yik, i = 1, . . . , n, k = 1,2 (i.e. m = 2) of the 2D vectors
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Here p′ denotes the iteration order number, η is called by the learn-
ing rate. Usually such search gives the local minimum of E. It depends on
the starting configuration of Yi, i =1, n. The convergence rate and manner
depends on η. One of the problems is to optimize η.

E is commonly referred to as Sammon’s stress. It is a measure of how
well the interpattern distances are preserved when the patterns are pro-
jected from a higher-dimensional space to a lower-dimensional space. The
stress equal to 0 indicates a loss less mapping. The steepest descent pro-
cedure may be used to search for a minimum of E. Sammon’s stress is
designed so that short distances contribute more to the value of E. In the
process of minimizing E, therefore, the mapping gives a greeter priority to
the preservation of short distances rather than the long ones.

Sammon’s algorithm involves a large amount of computations. Since,
n(n−1)/2 distances have to be computed for every step within an iteration,
the algorithm soon becomes impractical for a large number of patterns.
Sammon’s algorithm does not provide an explicit function governing the
relationship between patterns in the original space and in the configuration
(projected) space. Therefore, it is impossible to decide where to place the
new d-dimensional data in the final m-dimensional configuration created by
Sammon’s algorithm. Sammon’s algorithm has no generalization capability.
In order to project new data, one has to run the program again on pooled
data (old data and new data) [5].

3. A Neural Network for Sammon’s Projection

SAMANN network for 2D projection is given in Figure 1. It is a feedfor-
ward neural network where the number of input units is set to be the fea-
ture space dimension d, and the number of output units is specified as the
extracted feature space dimension m. They have derived a weight updating
rule for the multilayer perceptron neural network that minimizes Sammon’s
stress, based on the gradient descent method.

The general updating rule for all the hidden layers, l = 1, . . . ,L− 1 and
for the output layer (l =L) is:

�ω
(l)
jk =−η

∂Eµν

∂ω
(l)
jk

=−η(�
(l)
jk(µ)yl−1

j (µ)−�
(l)
jk(ν)yl−1

j (ν))
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Figure 1. SAMANN network for 2D projection.

where ωjk is the weight between the unit j in the layer l − 1 and the unit
k in the layer l, η is the learning rate, y

(l)
j is the output of the j th unit

in the layer l, and µ and ν are two patterns. The �
(l)
jk are the errors accu-

mulated in each layer and backpropagated to a preceding layer, similarly
to the standard backpropagation. The sigmoid activation function whose
range is (0.0,1.0) is used for each unit. However, in the neural network
implementation of Sammon’s mapping the errors in the output layer are
functions of the interpattern distances. In each learning step, the artificial
neural network is shown by two points. The outputs of each neuron are
stored for both points. The distance between the neural network output
vectors can be calculated and an error measure can be defined in terms of
this distance and the distance between the points in the input space. From
this error measure a weight update rule can be derived. Since no output
examples are necessary, this is an unsupervised algorithm.

The SAMANN unsupervised backpropagation algorithm [8] is as fol-
lows:

1. Initialize the weights randomly in the SAMANN network.
2. Select a pair of patterns randomly, present them to the network one

at a time, and evaluate the network in a feedforward fashion.
3. Update the weights in the backpropagation fashion starting from the

output layer.
4. Repeat steps 2–3 a number of times.
5. Present all the patterns and evaluate the outputs of the network; com-

pute Sammon’s stress; if the value of Sammon’s stress is below a
prespecified threshold or the number of iterations (from steps 2–5)
exceeds the prespecified maximum number, then stop; otherwise, go to
step 2.
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One iteration in our research means showing all pairs of samples to the
neural network once.

4. Control Parameters of the SAMANN Algorithm

The rate, at which artificial neural networks learns, depends upon several
controllable factors. Obviously, a slower rate means that a lot more time is
spent in accomplishing the learning to produce an adequately trained sys-
tem. At the faster learning rates, however, the network may not be able
to make the fine discriminations possible with a system that learns more
slowly. When the learning rate is very small, the weight adjustments tend
to be very small. Thus, if η is small when the algorithm is initialized, the
network will probably take an unacceptably long time to converge.

As usual, several factors besides time have to be considered when dis-
cussing the training task. Network complexity, size, paradigm selection,
architecture, type of the learning rule or rules employed, and a desired
accuracy must everything be considered. These factors play a significant
role in determining how long it will take to train a network. Changing any
one of these factors may either extend the training time to an unreasonable
length or even result in an unacceptable accuracy.

Learning rate η usually is positive and usually ranging between zero and
one. If the learning rate is greater than one, it is easy for the learning algo-
rithm to overshoot in correcting the weights, and the network will oscillate.
Small values of the learning rate will not correct the current error fast, but
if small steps are taken in correcting errors, there is a good chance of arriv-
ing at the best minimum convergence.

The backpropagation algorithm is made more powerful by adding a
momentum term as follows:

�ωcurrent =−η
∂E

∂ωcurrent
+α�ωprevious

where �ωprevious represents the previous weight adjustment, and 0 �α � 1.
Thus, the new component α�ωprevious represents a fraction of the previous
weight adjustment for a given weight. A momentum component will help
to damp the oscillations around the optimality by encouraging the adjust-
ments to stay in the same direction.

5. Optimization for Control Parameters

This paper deals with the projection of datasets onto 2D’s using the
SAMANN network. It has been noticed that the training depends on differ-
ent parameters. In the experiments, Mao and Jain [8] have employed the
next parameters when training the SAMANN network: a two-layer (one
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hidden layer) network with 20 hidden units; the SAMANN network is trained
using the standard backpropagation algorithm with the learning rate of 0.7
and the momentum value of 0.3 for 2,00,000 iterations; afterwards, the unsu-
pervised backpropagation algorithm is used to train the SAMANN network
for 60,000 iterations, the learning rate and momentum in the unsupervised
backpropagation algorithm being 0.02 and 0.01, respectively, for the artifi-
cial datasets, and 0.05 and 0.02, respectively, for the real datasets. The experi-
ments, done in this paper, show in what way the SAMANN network training
depends on the learning rate and the momentum term.

In this paper we apply the gradient steepest descent procedure (diagonal
Newton method) to search for a minimum of the stress. The possibilities
to apply more sophisticated methods for this purpose are investigated in
Pohlheim [14].

Pohlheim [14] uses two different methods for optimization. First, a stan-
dard optimization method included in MATLAB was employed (BFGS
Quasi-Newton method with a mixed quadratic and cubic line search pro-
cedure – [15]). Later, a more robust search method was employed, the
RPROP algorithm [16]. The RPROP algorithm uses only the changes in
the sign of the gradient for step size control. It is widely used in the field
of neural networks. Both optimization algorithms (BFGS Quasi-Newton
and RPROP) produced good results. However, there are no advantages
signed compared with the classic descent procedure. In all the cases, using
gradient-based optimization the projection with a very small error can be
searched for.

It is possible to formulate an optimization problem to search for opti-
mal set of parameter values. The Bayesian approach [9, 10] or other regu-
lar methods of global optimization maybe used. The objective function for
the minimization here is the mapping error obtained after the application
of the network training procedure. The training of the SAMANN network
is very time-consuming operation. It restricts essentially the application of
the methods above. Therefore, we use simpler strategy for optimization of
the control parameters.

The following datasets were used in the experiments:

1. Iris dataset (Fisher’s iris dataset) [2]. A real dataset with 150 random
samples of flowers from iris species setosa, versicolor and virginica.
From each species there are 50 observations of sepal length, sepal
width, petal length and petal width in cm. The iris flowers are
described by 4 attributes.

2. Salinity dataset [12]. That is a set of measurements of water salin-
ity (i.e., its salt concentration) and river discharge is taken in North
Carolina’s Pamlico Sound. 28 subjects, 4 variables (Lagged Salinity,
Trend, Discharge, Salinity).
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3. HBK dataset (Artificial dataset generated by Hawkins et al. [3]). It
consists of 75 four-dimensional patterns. The HBK dataset is an arti-
ficially constructed dataset with 14 outliers.

4. Artificial datasets generated randomly. The six random datasets are
comprised of 10, 20, 50, 100, 150 and 200 four-dimensional patterns.

In all the experiments a two-layer (one hidden layer) network with
20 hidden units is used.

First of all, three experiments with Iris dataset have been carried out that
show in what way the network training rate depends on the momentum
term:

a. The SAMANN network is trained using the standard backpropaga-
tion algorithm with a learning rate of 0.7 and without momentum
term for 2,60,000 iterations.

b. The SAMANN network is trained using the standard backpropaga-
tion algorithm with a learning rate of 0.7 and momentum value of 0.3
for 2,00,000 iterations. Then the unsupervised backpropagation algo-
rithm is used to train the SAMANN network for 60,000 iterations.
The learning rate and momentum in unsupervised algorithm are 0.05
and 0.02, respectively.

In Figure 2 the dependence of the projection error on the number of
iterations is presented. Note that, when experimenting with the momen-
tum term with parameters described in case b, better results have been
obtained, that is, the momentum term makes it possible to speed up the
network training and the better results thereby are obtained in a shorter
time interval. By using the parameters proposed by Mao and Jain [8], we
have succeeded in projecting the Iris dataset onto the plane (Figure 5c), the
projection error (Sammon’s stress) being E =0.00518. Meanwhile, Mao and
Jain [8] have obtained a similar error E = 0.007 in the projection of the
Iris dataset using the SAMANN network with the same network param-
eters.

When projecting data, it is of great importance to achieve good results
in a short time interval. In the consideration of the SAMANN network,
it has been observed that the projection error depends on different param-
eters. The latest investigations have revealed that in order to achieve good
results, one needs to correctly select the learning rate η. It has been started
so far that projection yields the best results if the η value is taken from the
interval (0,1). Mao and Jain [8] used η = 0,7 in their study. In that case,
however, the network training is very slow. One of the possible reasons is
that, in the case of SAMANN network, the interval (0,1) is not the best
one. Thus, it is reasonable to look for the optimal value of the learning
parameter that may not necessarily be within the interval (0,1).
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Figure 2. Dependence of the projection error on the number of iterations.

The experiments have been done with real datasets, using 28, 75 and 150
four-dimensional patterns (Salinity dataset, HBK dataset, Iris dataset). At
first the dependence of the data projection accuracy on the learning rate η

has been defined for η ∈ (0,1). The results obtained are illustrated in Fig-
ure 3. This figure demonstrates that with an increase in the learning rate
value, a better projection error is obtained. That is why the experiments
have been done with higher values of the learning rate beyond the limits
of the intervals (0,1). The results are presented in Figure 4. It has been
noticed that the best results are at η∈ [1,100). We can conclude from Fig-
ures 3 and 4 that the optimal value of the learning rate for the datasets
considered is within the interval [10, 30]. In the case of the Salinity data-
set, the optimal value of the learning rate is η=10, for HBK dataset η=10,
and for Iris dataset η = 30. At these values of the learning rate we obtain
the best projection results, that is, the data are projected more rapidly and
more exactly. For the fixed number of iterations, good projection results are
obtained in a shorter time interval than that taking the learning rate values
from the interval(0,1).

While experimenting the computing time and the errors obtained in each
iteration have been defined as well. In Figures 5–7, the dependence of the
projection error on the number of iterations is presented at different values
of the learning rate for three real datasets.

Figure 5c specifies Figure 5b at the beginning of iterations (first 1000 iter-
ations). In each figure only several cases are described. Figures 5–7 indicate
that the higher the value of the learning rate, the more rapidly one suc-
ceeds in getting good results (i.e., sufficiently low projection error). How-
ever, with an increase in the value of the learning rate, the error variations
also increase, which can cause certain network training problems. Figure
8(a–c) illustrates 2D projection maps of the Salinity, HBK and Iris datasets



616 V. MEDVEDEV AND G. DZEMYDA

Figure 3. (a – Salinity dataset, b – HBK dataset, c – Iris dataset) The dependence of the data
projection accuracy on the learning rate η, η∈ (0,1).

Figure 4. (a – Salinity dataset, b – HBK dataset, c – Iris dataset) The dependence of the data
projection accuracy on the learning rate η, η∈ [1,100).

using the SAMANN network at the optimal value η of the learning rate,
defined before.

The investigations have also been performed with datasets generated ran-
domly. The target was to find out what the optimal learning rate value
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Figure 5. The dependence of the projection error on the number of iterations for the Salinity dataset.

should be and how it changes with an increase in the number of training
vectors. The datasets considered are comprised of 10, 20, 50, 100, 150 and
200 vectors.



618 V. MEDVEDEV AND G. DZEMYDA

Figure 6. The dependence of the projection error on the number of iterations for the HBK
dataset.

The SAMANN network was initialized at random values ranging
(−0.01,0.01). The network was trained for 7000 iterations. The momentum
term was set to be 0.05, and the learning rate for each experiment was
in within the interval [1,50]. The results are given in Figure 9. Different
values of the optimal learning rate have been got for different datasets,
dependent on the number of vectors of the training dataset. The higher
the dataset dimension, the higher the value of the learning rate. The opti-
mal learning rate value η for the datasets considered in within the interval
[5,35].
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Figure 7. The dependence of the projection error on the number of iterations for Iris dataset.

Figure 8. (a – Salinity dataset, b – HBK dataset, c – Iris dataset) 2D projection maps of real
datasets using the SAMANN network.
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Figure 9. The dependence of the optimal learning rate on the number of patterns in the dataset.

6. Retraining of the SAMANN Network

After training the SAMANN network, a set of weights of the neural network
are fixed. A new vector shown to the network is mapped into the plane very
fast and quite exactly without any additional calculations. However, while
working with large data amounts there may appear a lot of new vectors,
which entails retraining of the SAMANN network after some time. That is
why two strategies for retraining the neural network that realizes multidi-
mensional data visualization have been proposed and then analysis made.
Retraining of the network has to be efficient and the training algorithm has
to converge rapidly. It has been established that training of the SAMANN
neural network requires much calculations, therefore we strive to obtain new
weights and a precise data projection as soon as possible.

The strategies of the neural network retraining data are as follows:

1. The SAMANN network is trained by N1 initial vectors, a set of
weights ω1 is obtained, then the visualization error E(N1) is calculated
and vector projections are localized on the plane. After the emergence
of N2 new vectors, the neural network is retrained with all the N1 +N2

vectors, and after each iteration the visualization error E(N1 +N2) is
calculated and the computing time is measured. The new set of SA-
MANN network weights ω2 is found.

2. The SAMANN network is trained by N1 initial vectors, a set of
weights ω1 is obtained, and the visualization error E(N1) is calculated.
Since in order to renew the weights ω, a pair of vectors µ and ν is
simultaneously provided for the neural network, the neural network is
retrained with 2∗N2 vectors at each iteration: at each step of training
one vector is taken from the primary dataset and the other from the
new one. After each iteration the visualization error E(N1 +N2) is cal-
culated and the computing time is measured. The new set of network
weights ω2 is found.
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Two datasets have been used in the experiments:

1. Iris dataset [2];
2. 300 randomly generated vectors Xi = (xi1, . . . , xin)∈Rn (three spherical

clusters with 100 vectors each, n=5):

xij ∈ [0,0.2], i =1, . . . ,100; j =1, . . . ,5, sqrt

⎡

⎣
n∑

j=1

(0.1−xij )
2

⎤

⎦�0.1

xij ∈ [0.4,0.6], i =101, . . . ,200; j =1, . . . ,5, sqrt

⎡

⎣
n∑

j=1

(0.5−xij )
2

⎤

⎦�0.1

xij ∈ [0.8,1], i =201, . . . ,300; j =1, . . . ,5, sqrt

⎡

⎣
n∑

j=1

(0.9−xij )
2

⎤

⎦�0.1.

These two datasets were divided into two parts: the primary dataset and
the set of new vectors. The first part is used for primary training of the
SAMANN network, while the new part together with the primary dataset
– for retraining the network.

In the analysis of strategies for the network retraining, a particular case
of the SAMANN network was considered: a feedforward artificial neural
network with one hidden layer and two outputs (d = 2). In each case, the
same number (n2 = 20) of neurons of the hidden layer was taken and the
set of initial weights was fixed in advance. To visualize the initial data-
set, the following parameters were employed: the number of iterations M =
10,000, the training parameter η = 10; to visualize the set of new vectors:
the training parameter was η = 1, and the number of iterations depended
on the strategy chosen.

When calculating, the time of algorithm performance was measured. Fig-
ures 10 and 11 demonstrate the results of calculation. Only the results of
retraining the SAMANN network with the new vectors are indicated in the
figures. The first strategy yield good results, however, retraining of the net-
work is slow. The best visualization results are obtained by taking points
for network retraining from the primary dataset and the new dataset (sec-
ond strategy). The second strategy enables us to attain good visualization
results in a very short time as well as to get smaller visualization errors and
to improve the accuracy of projection as compared to other strategies (Fig-
ure 11 illustrates this fact best in the experiment with the dataset of ran-
dom numbers). The proposed second strategy makes it possible to reduce
the duration of calculation a great deal in case there are considerably less
new vectors than the initial ones.
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Figure 10. Dependence of the projection error on the computing time for the Iris dataset.

Figure 11. Dependence of the projection error on the computing time for randomly generated
vectors.

7. Conclusions

Mapping problem usually is formulated as an optimization one. Seeking
better values of the optimization criterion, it is necessary to optimize con-
trol parameters that influence the convergence of the local search. The
optimal values of the control parameters of SAMANN network train-
ing have been discovered seeking to speed up the learning process. The
experiments were carried out both on artificial and real data. Two cases
were analyzed: training of the SAMANN network with full data set, and
retraining of the SAMANN network when the new data points appear.

The experimental investigation shows that the optimal value of the learn-
ing rate is in the interval [5,30]. By selecting such values of the learning
rate, the significant economy of the computing time is possible (up to 5–
7 times) for the fixed number of iterations. Smaller values of the learn-
ing rate within the interval (0,1) guarantee a more stable convergence to
the minimum of the mapping error. Some fluctuations in the result are
observed when the rate is set to be larger. However, these fluctuations are
rather small when the learning rate is in the interval [5,30].
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The ability of network generalization to visualize new data has been ana-
lyzed. Two strategies for retraining the neural network that visualizes mul-
tidimensional data have been proposed and investigated. It is important
that retraining of the neural network were efficient and the training algo-
rithm were faster convergent, therefore effort was put to obtain a new set
of weights in a shorter time. The experiments have shown that it is expe-
dient to take one vector from the primary dataset and the other from the
new one at every step of training. This strategy yields smaller visualization
errors faster.
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